
Representation of the Cardiac Electrical Activity in the Form of a Double Layer
Potential

Vitaly Kalinin1, Alexander Shlapunov 2

1 EP Solution SA, Yverdon-les-Bains, Switzerland
2 Sirius University of Science and Technology, Krasnodar region, Russia

Abstract

In this paper, the representation of the potential of the
cardiac electric field by the double layer potential is theo-
retically investigated.

1. Introduction

There is a hypothesis (see, for instance [1]) that the car-
diac electrical potential can be represented as the potential
of a double layer (defined on the myocardium surface) with
a density proportional to the surface transmembrane poten-
tial. This hypothesis underlies the “solid angle” method for
studying the ventricles electrical potentials [1]. The dou-
ble layer approach can also be applied to solve the inverse
problem of electrocardiography. In this paper, we consider
this hypothesis based on the simplified version of the bido-
main model.

2. Definitions and preliminaries

Let Ω ⊂ R3 be a bounded domain with a relatively
smooth boundary ∂Ω. The double layer potential u for
the Laplacian in R3 is defined as:

u =
1

4π

∫
∂Ω

∂

∂n

1

|x− y|
w(y)dSy, x ∈ R3, y ∈ R3,

or
u = W∂Ωw,

where n is the outer unit normal vector defined for almost
all y on ∂Ω, ∂

∂n
1

|x−y| is the conormal derivative of the fun-
damental solution to the Laplace equation in R3, W∂Ω is
the double layer operator, w is the double layer density.

We assume that ∂Ω is a Lipshitz boundary and w ∈
L2(∂Ω). This choice is motivated by the fact that the car-
diac surface is usually approximated by a triangular sur-
face for the numerical computations and the solid angle
approach [1] considers the double layer density a piece-
wise constant function. The theory of elliptic boundary

value problems for Lipshitz domains with boundary data
in Lp is still far from complete. In this paper we will apply
the non-tangential limit concept (see, for instance [2] and
the literature cited there).

For points x ∈ ∂Ω we define an interior non-tangential
approach region:

Qint(x) = {y ∈ Ω : |x− y| ≤ (1 + α) · dist(y, ∂Ω)}

with fixed α > 0. In the same way we define the ex-
terior non-tangential approach region Qext(x) for points
y ∈ R3 \ Ω.

We define the interior and exterior restrictions of a func-
tion u(x), x ∈ R3 on ∂Ω by the non-tangential limits:

T int
∂Ω u(x) = lim

p→x
u(p), x ∈ ∂Ω, p ∈ Qint,

T ext
∂Ω u(x) = lim

p→x
u(p), x ∈ ∂Ω, p ∈ Qext,

In the same manner we define the interior and exterior
conormal derivatives of u on ∂Ω:

∂int
∂Ωu(x) = lim

p→x
⟨∇u(p), n⟩, x ∈ ∂Ω, p ∈ Qint,

∂ext
∂Ω u(x) = lim

p→x
⟨∇u(p), n⟩, x ∈ ∂Ω, p ∈ Qext.

For a function u in Ω we define an interior non-
tangential maximal function umax

int (x) = sup|u(y)|, x ∈
∂Ω, y ∈ Qint. Similarly, we define an exterior non-
tangential maximal function umax

ext (x) = sup|u(y)|, x ∈
∂Ω, y ∈ Qext for a function u in R3 \ Ω.

We assume that the interior and exterior non-tangential
maximal functions (∇u)max for gradient ∇u of u be-
longs to L2(∂Ω). Then T

int(ext)
∂Ω u(x) and ∂

int(ext)
∂Ω u(x)

are unique, exist a.e. on ∂Ω and belong to L2(∂Ω). More-
over, the classical jump properties of the single layer and
double layer potentials holds true. In particular,

T int
∂Ω u(x) = (− 1

2I +K)w ≡ W̃ int
∂Ω w,

T ext
∂Ω u(x) = ( 12I +K)w ≡ W̃ ext

∂Ω w,
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where Ku = p.v. 1
4π

∫
∂Ω

⟨(x−y),n⟩
|x−y|3 w(y)dSy .

T int
∂Ω u(x)− T ext

∂Ω u(x) = w; ∂int
∂Ωu(x)− ∂ext

∂Ω u(x) = 0.

W̃ int
∂Ω c = c, W̃ ext

∂Ω c = 0, where c is a constant.

Operators W̃ int
∂Ω and W̃ ext

∂Ω acting from L2(∂Ω) to
L2(∂Ω) are continuous, operator W̃ int

∂Ω is continuously
invertible. Unfortunately, when ∂Ω is Lipshitz surface,
W̃ int

∂Ω and W̃ ext
∂Ω are not necessary Fredholm’s operators.

It is also easy to prove the converse of the double layer
jump properties:

Proposition 2.1: Let Uint and Uext be harmonic func-
tions defined in Ω and R3 \ Ω respectively, such that
∂int
∂Ωu = ∂ext

∂Ω u on ∂Ω and Uext = O( 1
|x| ) as |x| → ∞.

Then there is a unique double layer density w ∈ L2(∂Ω),
namely w = T int

∂Ω Uint − T ext
∂Ω Uext, such that Uint =

W∂Ωw, Uint = W∂Ω(w + const).
The boundary value data in L2(∂Ω) for the calassical

boundary value problems are understood in the sense of the
non-tangential limits. Subject to (∇u)max ∈ L2(∂Ω), the
classical results on the solvability of the interior Dirichlet
problem, and the interior and exterior Neumann problems
for the Laplacian remain true. In particular, the solution to
the Dirichlet problem is always represented by the poten-
tial of a double layer whose density is unique.

Let’s take a closer look at the exterior Dirichlet problem
(EDP):

∆Uext = 0 in R3 \ Ω,
T ext
∂Ω Uext = f,

Uext = O(
1

|x|
) as |x| → ∞.

The problem is uniquely solvable. Under the stronger
“decay on infinity” condition: u = O( 1

|x|2 ) as |x| → ∞
its solution is the potential of a double layer with density
w ∈ L2(∂Ω). The double layer density w can be found by
solving the operator equation: W̃ ext

∂Ω w = f . Its solution
is defined up to an arbitrary additive constant and does not
exist for all f ∈ L2(∂Ω). The well-known Fredholm solv-
ability criteria for this equation can not be applied. How-
ever, Proposition 2.1 shows that, as in the Fredholm case,
the solution to EDP is the double layer potential if the con-
jucate interior Neumann problem:

∆Uint = 0 in Ω,

∂int
∂ΩUint = ∂ext

∂ΩUext on ∂Ω

is solvable.
The solvability criterium for the interior Neumann prob-

lem allow us to formulate the following statements.
Proposition 2.2: Let Uext be a solution to EDP. There

is a double layer density w ∈ L2(∂Ω) such that Uext is

the double layer potential: Uext = W∂Ωw if and only if∫
∂Ω

∂ext
∂ΩUext(x)ds = 0.

Corollary 2.3: Let Θ ⊂ R3 be a bounded Lipshitz do-
main with boundary ∂Θ such that Ω ⊂ Θ. Then the solv-
ability condition of the Proposition 2.2 is equivalent to the
condition:

∫
∂Ω

∂ext
∂ΘUext(x)ds = 0.

3. Results

Let Ω ⊂ R3 be the body domain with the boundary Γb

and Ωm: Ωm ⊂ Ω be the myocardium domain (the atria
or ventricles) with the boundary Γb. We call a domain Ω \
Ωm with the boundary Γb ∪ Γm as the extra-myocardial
domain and denote it as Ωb. We assume that Γb and Γm

are Lipschitz boundaries.
The analysis presented in this paper is based on the

bidomain model of electrical activity of the heart, which
govers the intracellular (ui), extracellular (ue) and extra-
myocardial (um) electrical potentials. We use a reduced
and simplified version of the bidomain model. Namely, we
consider only the elliptic equation of the bidomain model
(see [3]) and assume the intracellular (σi), extracellular
(σe) and extra-myocardial (σb) conductivities to be scalar
real positive constants. If the torso is surrounded by a non-
conductive medium (air), then the bidomain model can be
formulated as follows.

Model 1.

σi∆ui + σe∆ue = 0 in Ωm,

∆ub = 0 in Ωb

T int
Γm

ue = T ext
Γm

ub on Γm,

∂int
Γm

ui = 0, σe∂
int
Γm

ue = σb∂
ext
Γm

ub on Γm,

∂int
Γb

ub = 0. (1)

We also assume that the torso is surrounded by a con-
ductive medium with electrical conductivity equal to the
torso one and the extra-myocardial potential ub is defined
in R3 \ Ωm. This gives us the second version of the bido-
main model:

Model 2.

σi∆ui + σe∆ue = 0 in Ωm,

∆ub = 0 in R3 \ Ωm,

ub = O(
1

|x|
) as |x| → ∞,

T int
Γm

ue = T ext
Γm

ub on Γm,

∂int
Γm

ui = 0, σe∂
int
Γm

ue = σb∂
ext
Γm

ub on Γm, (2)

In addition, for both models we define the myocardium
surface trasmenbrane potential v on Γm as
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v = T int
Γm

ui − T int
Γm

ue.

For Models 1 and 2 we assume that the non-tangential
maximal functions for gradients of σiui + σeue and ub

belongs to L2(Γm) and L2(Γb) respectively.
Theorem 3.1: Let ui, ue, ub satisfy Model 2. There is a

double layer density w ∈ L2(Γm) such that ub is the the
double layer potential: ub = WΓm

(w+const). The double
layer density w is proportional to the surface trnsmebrane
potential v: w = σi

σi+σe
v if and only if σb = σi + σe.

Proof: We consider two functions: ub defined in R3\
Ωm and ϕ = σiui+σeue

σb
defined in Ωm. Functions ub and

ϕ are both harmonic. Acording to (2) ∂int
Γm

ϕ = ∂ext
Γm

ub on
Γm. Thus, according to Proposition 2.1 ub is a restriction
on R3 \ Ωm of the double layer potential with density w:
ub = W∂Ω(w + const) with w = T int

Γm
ϕ− T ext

Γm
ub.

Assume that w = kv with a proportionality coefficient
k. Using the definitions of ϕ and v and (2), that relation
can be written as:
T int
Γm

(σiui+σeue

σb
)− T ext

Γm
ue = k(T int

Γm
ui − T int

Γm
ue). It is

easy to check that this equality is valid only if σb = σi+σe

and k = σi

σi+σe
.

Theorem 3.2: Let ub in Ωb satisfy Model 1 and U in R3

be a potenial of a double layer defined on the myocardium
boundary Γm. If T int

Γb
ub ̸= 0, there is no double layer

potential U such that ub is a restriction of U on Ωb.
Proof: Assume that ub is a restriction of the double

layer potential U on Ωb and T int
Γb

ub ̸= 0. According to (1)
∂int
Γm

U = 0. The double layer potential U is continuous
when crossing the boundary Γb, hence ∂ext

Γb
U = ∂int

Γb
U =

0. Let Uout be a restriction of U on R3 \Ω. Function Uout

is a solution to the exterior Neumann problem:

∆Uout = 0 in R3 \ Ω,

∂ext
Γb

Uout = 0 in Γb,

Uout = O(
1

|x|
) in |x| → ∞.

Obviously, Uout = 0. Thus, T ext
Γb

Uout = 0. Double
layer potential U is continuous when crossing the bound-
ary Γb, hence T int

Γb
U = T int

Γb
ub = 0 on Γb. This fact

contradicts the assumption that T int
Γb

ub ̸= 0.

Although the body electrical potential ub satisfying
Model 1 cannot be presented as a double layer potential
we can state a problem to find a double layer potential U
which “coincides” with ub only on Γm.

Problem 1. Let ub be a function satisfying Model 1. It
is required to find a density w ∈ L2(Γm) of the double
layer potential U such that T ext

Γm
U = T ext

Γm
ub = W̃ ext

Γm
w on

Γm: (a) if T ext
Γm

ub is given: T ext
Γm

ub = fm ∈ L2(Γm); (b)
if T int

Γb
ub is given: T ext

Γb
ub = fb ∈ L2(Γb).

Problem 1(b) can be called the inverse electrocadiogra-
phy problem in terms of the density of the double layer.
Note, that even if σb = σi + σe the density w of such dou-
ble layer potential U is not nesessary proportional to the
transmembrane potential v.

To formulate the solvability results to Problem 1, we
introduce two operators. Let U be a solution to EDP in
R3 \ Ωm and f ∈ L2(Γm) be the EDP boundary con-
didtion. The first operator D is a linear continous map
of the boundary datum f of EDP to the interior non-
tangential limit of its solution on Γb: D: f ∈ L2(Γm) →
T int
Γb

U ∈ L2(Γb). The second operator is the continu-
ous linear Dirichlet-to-Neumann map NΓm on Γm: NΓm :
f ∈ L2(Γm) → ∂ext

Γm
U ∈ L2(Γm). In the same way,

we define the Dirichlet-to-Neumann map NΓb
on Γb: NΓb

:
T ext
Γb

U ∈ L2(Γb) → ∂ext
Γb

U ∈ L2(Γb). Note that operators
D and NΓm , NΓb

can be expressed explicitly by the sin-
gle layer and double layer potential operators in different
ways.

We will need the following result.
Let U be a solution of EDP in R3\Ωm with the boundary

datum f = T ext
Γm

ub. Then

T int
Γb

U = T ext
Γb

U = (W̃ ext
Γb

−D · T int
Γb

WΓb
) · T int

Γb
ub. (3)

This statement is a special case (see [4], Section 4) of a
much more general result obtained in [5].

Theorem 3.3: Problem 1(a) is solvable if and only if∫
Γm

NΓmfmds = 0. Problem 1(b) is solvable if and only

if
∫
Γb

NΓb
Bfbds = 0, where B ≡ W̃ ext

Γb
− D · T int

Γb
WΓb

.

The solutions to Problem 1 (a) and Problem 1 (b) if exist
are unique up to an arbitrary additive constant.

Proof: The statements of the theorem follows di-
rectly from Proposition 2.2, Corollary 2.3 and formula (3).

4. Discussion and conclusions

The state-of-art potential theory allow us to consider the
potential of a double layer with square integrable (includ-
ing piecewise constant) density given on a Lipschitz sur-
face approximating the boundary of the myocardium.

If the body is surrounded by an infinite electrically con-
ductive medium with a conductivity equal to that of the
body (Model 2), then the electrical potential in the extra-
myocardial domain is always represented by the poten-
tial of a double layer defined on the myocardium surface.
The density of a double layer representing a given extra-
myocardial potential is unique up to an arbitrary additive
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constant. If the body conductivity is equal to the sum of
the intracellular and extracellular conductivities, then the
double layer density is proportional to the transmembrane
potential on the myocardium surface.

Under the assumptions that the medium surrounding the
body does not significantly affect the electrophysiologi-
cal processes of the myocardium and the above relation
of the electrical conductivities is close to physiological,
the “solid angle” method [1] can be applied to analyse the
electrical field of the heart.

If the body is surrounded by air (Model 1), then the non-
zero cardiac electrical potential in the extra-myocardial
domain cannot be represented by the potential of a dou-
ble layer defined on the myocardium surface. The cardiac
electrical potential of the myocardium surface is presented
by the double layer potential only subject to the conditions
obtained in this work. Moreover, the double layer density
is not necessarily proportional to the transmembrane po-
tential on the surface of the myocardium, even if electrical
conductivity relations (3) are met. Therefore, the repre-
sentation of the solution to the inverse problem of elec-
trocardiography in terms of a double layer has significant
limitations.
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